网络与软件安全研究团队
目前课题组该方向有博士生1名,研究生15余名,欢迎对网络安全、软件安全感兴趣的同学加入!
代表性论文:
·Zhang Bing,Zhi Xu et al. Enhancing Java Web Application Security: Injection Vulnerability Detection via Interprocedural Analysis and Deep Learning, IEEE Transactions on Reliability, 2025, Accept, doi: 10.1109/TR.2024.3521381.
·Bing Zhang, Rong Ren, Jia Liu, Mingcai Jiang, Jiadong Ren, Jingyue Li. SQLPsdem: A Proxy-based Mechanism towards Detecting, Locating and Preventing Second-Order SQL Injections, IEEE Transactions on Software Engineering, 2024, DOI: 10.1109/TSE.2024.3400404. (CCF A, 中科院1区 TOP, SCI)
·Bing Zhang, Xuyang Zhao, Jiangtian Nie, Jianhang Tang, Yuling Chen, Yang Zhang, and Dusit Niyato. 2024. Epidemic Model-based Network Influential Node Ranking Methods: A Ranking Rationality Perspective. ACM Computing Surveys, 56, 8, Article 203 (August 2024). https://doi.org/10.1145/3653296 (中科院1区TOP, SCI)
·Bing Zhang, Jingyue Li*, Jiadong Ren, Guoyan Huang. Efficiency and Effectiveness of web application vulnerability detection approaches: A Review, ACM Computing Surveys, 2022, 54, 9, Article 190. https://dl.acm.org/doi/10.1145/3474553 (中科院1区TOP, SCI)
·Zhangqi Zheng, Bing Zhang*, Yongshan Liu, Jiadong Ren, Xuyang Zhao, Qian Wang, An approach for predicting multiple-type overflow vulnerabilities based on combination features and a time series neural network algorithm, Computers & Security, 2022. (CCF B, SCI)
·Zheng Z, Liu Y, Zhang B, et al. A multitype software buffer overflow vulnerability prediction method based on a software graph structure and a self-attentive graph neural network[J]. Information and Software Technology, 2023: 107246. (CCF B, 2区 SCI)
·张炳,文峥,赵宇轩,王苧,任家东. 双粒度轻量级漏洞代码切片方法评估模型,通信学报,2021,42(11): 233-241.
· 任家东, 张亚飞, 张炳*,等. 基于特征选择的工业互联网入侵检测分类方法[J]. 计算机研究与发展, 2022, 59(5):12.
·Guoyan Huang, Xinyi Li, Bing Zhang*, Jiadong Ren. PM2.5 Concentration Forecasting at Surface Monitoring Sites Using GRU Neural Network Based on Empirical Mode Decomposition [J], Science of the Total Environment, 2021, 768:144516.(中科院1区TOP, SCI,高被引)
·张炳, 文峥, 魏筱瑜, 任家东, InterDroid:面向概念漂移的可解释性Android恶意软件检测方法, 计算机研究与发展, 2021, 58 (11): 2456-2474.