Zhang Bing
Personal Homepage
Personal Profile

Bing Zhang is currently a Lecturer and holding a post-doctoral position at the School of Information Science and Engineering, Yanshan University, China. He received his bachelor's degree from the College of Computer and Information Technology, Three Gorges University, China, in 2012, and the Ph.D. degree from the School of Information Science and Engineering, Yanshan University, China, in 2018. He has ever been with the Norwegian University of Science and Technology as a Visiting Scholar. His research interests include data mining, machine learning, and software security.


EDUCATIONAL BACKGROUND

Received PHD degree (Major: Computer science and technology) in School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China, 2012-2017

Received Bachelor degree (Major: Computer science and technology) in College of Computer and Information Technology, China Three Gorges University, China, 2008-2012 


 LEARNING EXPERIENCE

 ~2018.12.30, As a Visiting scholar in Norwegian University of Science and Technology (NTNU), Trondheim, Norway

2017.1.16~2017.2.20, As a visiting PHD student in University of Hull, Hull, UK.


RESEARCH FIELDS

(1)   Software Security (Web Vulnerabilities based on Source codes and Binary code analysis)

(2)   Software Structure analysis (Complex network, sequence pattern analysis)

(3)   Health data analysis by machine learning/data mining

(4)   Air Quality Prediction


COURSES

(1)   Java Web Development Technology

(2)   Software Testing and Quality Assurance


PROJECT ITEMS

(1)  National Natural Science Foundation of China,61802332,Research on Early Warning for Online Vulnerabilities during developing Web Applications,2019/01-2021/12,Leader.

(2)  The Graduate innovative Funding project of Hebei Province,2016SJBS010,Research on the methods and key technologies of influential node mining in software execution process,2016/01-2017/01,Leader.

(3)  National Natural Science Foundation of China,61872449,Research on the analysis approach to the mining of key modules structure in software system and its evolution,2018/01-2021/12,Main Participant.

(4)  National Natural Science Foundation of China,61872451,analysis approach to the propagation behavior pattern and evolution of Air Quality based on temporal-spatial dynamic complex network,2018/01-2021/12,Main Participant.

(5)  National Natural Science Foundation of China,61572420,Research on multi-level entity mining method and key technology for software system based on complex network,2016/01-2019/12,Main Participant.

(6)  Project of university talent training program for innovation team of Hebei Province,LJRC002,Cloud computing for big data analysis,2014/01-2016/12,Participant.

(7)  National Natural Science Foundation of Hebei Province,F2014203152,Research on sequence analysis method based on directed graph in software vulnerability detection,2014/01-2016/12,Participant.

(8)  National Natural Science Foundation of China,61170190,Modeling and analysis of software security characteristics based on Data Mining,2012/01-2015/12,Participant.


PUBLICATIONS

2023:

    ·  Wu G, Zhang B, Li Y. Intelligent and survivable resource slicing for 6G-oriented UAV-assisted edge computing networks[J]. Computer Communications, 2023, 202: 154-165. (CCF C,SCI)

     · Jianhang Tang, Guoquan Wu, Mohammad Mussadiq Jalalzai, Lin Wang, Bing Zhang, Yi Zhou. Energy-optimal DNN model placement in UAV-enabled edge computing networks[J]. Digital Communications and Networks, 2023. (2区 SCI)

     · Zheng Z, Liu Y, Zhang B, et al. A multitype software buffer overflow vulnerability prediction method based on a software graph structure and a self-attentive graph neural network[J]. Information and Software Technology, 2023: 107246. (CCF B, 2区 SCI)

  · Zhao Y, Ren J, Zhang B, et al. An explainable attention-based TCN heartbeats classification model for arrhythmia detection[J]. Biomedical Signal Processing and Control, 2023, 80: 104337. (SCI 2区, SCI)

     · Wang Q, Gao Y, Ren J, Zhang B, et al. An automatic classification algorithm for software vulnerability based on weighted word vector and fusion neural network[J]. Computers & Security, 2023, 126: 103070.(CCF B, SCI)


2022: 

    ·   Wang, Qian & Zhao, Wenfang & Wei, Xiaoyu & Ren, Jiadong & Gao, Yuying & Zhang, Bing. (2022). Intrusion Detection Algorithm Based on Convolutional Neural Network and Light Gradient Boosting Machine. International Journal of Software Engineering and Knowledge Engineering. 32. 10.1142/S0218194022500462. (CCF C, SCI)

     ·  He H, Huang G, Zhang B, et al. Research on Boruta-ET-Based Anomalous Traffic Detection Model[J]. Security and Communication Networks, 2022, 2022. (CCF C, SCI)

     ·  Liu X, Ren J, He H, B Zhang et al. All-Packets-Based Multi-Rate DDoS Attack Detection Method in ISP Layer[J]. Security and Communication Networks, 2022, 2022.  (CCF C, SCI)

      · He H, Huang G, Zhang B, et al. Research on DoS Traffic Detection Model Based on Random Forest and Multilayer Perceptron[J]. Security and Communication Networks, 2022, 2022.   (CCF C, SCI)

    ·  Wang Q, Ren J, Zhang H, B Zhang et al. Identifying Influential Spreaders in Complex Networks Based on Degree Centrality[C]//Web Information Systems and Applications: 19th International Conference, WISA 2022, Dalian, China, September 16–18, 2022, Proceedings. Cham: Springer International Publishing, 2022: 314-326.

    · Zhang B , Gao Y , Wu J , et al. Approach to Predict Software Vulnerability Based on Multiple-LevelN-gram Feature Extraction and Heterogeneous Ensemble Learning[J]. International Journal of Software Engineering and Knowledge Engineering, 2022, 32(10):1559-1582. (CCF C, SCI)

    · Bing Zhang, Jingyue Li*, Jiadong Ren, Guoyan  Huang. Efficiency and Effectiveness of web application vulnerability detection approaches: A Review, ACM Computing Surveys,  2022, 54, 9, Article 190.  https://dl.acm.org/doi/10.1145/3474553  (中科院1区TOP, SCI)

    · Zhangqi Zheng, Bing Zhang*, Yongshan Liu, Jiadong Ren, Xuyang Zhao, Qian Wang, An approach for predicting multiple-type overflow vulnerabilities based on combination features and a time series neural network algorithm, Computers & Security, 2022. (CCF B, SCI)

    ·任家东, 张亚飞, 张炳*,等. 基于特征选择的工业互联网入侵检测分类方法[J]. 计算机研究与发展, 2022, 59(5):12.

   ·Hongyan He, Guoyan Huang,  Bing Zhang, and Zhangqi Zheng,Research on DoS Traffic Detection Model Based on Random Forest and Multilayer Perceptron [J], Security and Communication networks,Volume 2022, Article ID 2076987. (CCF C类,SCI).

   ·Xinqian Liu, Jiadong Ren,  Haitao He, Bing Zhang, Qian Wang, and Zhangqi Zheng, All-Packets-Based Multi-Rate DDoS Attack Detection Method in ISP Layer[J], Security and Communication Networks, Volume 2022, Article ID 7551107. (CCF C类,SCI).


 2021:

  • 张炳,文峥,赵宇轩,王苧,任家东. VCBy:一种双粒度轻量级漏洞代码切片方法评估模型,通信学报,2021,42(11).

  •  张炳, 文峥, 魏筱瑜, 任家东, InterDroid:面向概念漂移的可解释性Android恶意软件检测方法, 计算机研究与发展, 2021, 58 (11): 2456-2474.

  •  XinqianLiu,JiadongRen*,HaitaoHe,BingZhang,ChenSong,YunxueWang,A fast all-packets-based DDoS attack detection approach based on network graph and graph kernel,Journal of Network and Computer Applications,2021, 185(2):103079.(中科院2区 TOP, SCI)

  • Guoyan Huang, Xinyi Li, Bing Zhang*, Jiadong Ren. PM2.5 Concentration Forecasting at Surface Monitoring Sites Using GRU Neural Network Based on Empirical Mode Decomposition [J], Science of the Total Environment, 2021, 768:144516.(中科院1区TOP, SCI,高被引)

  2020:

  • 张炳,任家东,王苧. 网络安全风险评估分析方法研究综述[J]. 燕山大学学报,2020,44(3):290-305.

  • 张炳, 温敬业, 任慧慧.  A Classification Method of Arrhythmia Based on Adaboost Algorithm. 2020 International Conference on Machine Learning and Computer Application , 2020/09/11 - 2020/09/13 China, Diqingzangzuzizhizhou (EI)

  • 张炳,单纯等. Software Crucial Functions Ranking and Detection in Dynamic Execution Sequence Patterns [J]. International Journal of Software Engineering and Knowledge Engineering, 2020, 30(5): 695-719. (CCF C,SCI)

 2019:

  • 宋琛,黄国言,尹波,张炳等. Label propagation algorithm based on node similarity driven by local information [J]. International Journal of Modern Physics B, 2019, 33(30): 1950363. (SCI 四区,IF:0.736)

  • 张炳,孙盛廷,郝晓冰. Mining Important Functions in Software Network by Node Vulnerability [C]// 2019 2nd International Conference on Computer Information Science and Artificial Intelligence, 2019, Oct 25-27, Xi’an, China, Journal of Physics: Conference Series 1453 (2020) 012015. (EI: 20201108294035)

  • 宋琛,黄国言,张炳等. A Node Influence Ranking Algorithm Based on Probability Walking Model [J]. International Journal of Modern Physics B, 2019, 33(13): 1950132. (SCI 4区,IF:0.736)

  • 宋琛,黄国言,张炳等. Modeling Air Pollution Transmission Behavior as Complex Network and Mining Key Monitoring Station [J]. IEEE Access 2019, 7: 121245-121254. (SCI 2区,IF:3.557)

  • 张炳, 任家东 等. Health Data Driven on Continuous Blood Pressure Prediction based on Gradient Boosting Decision Tree Algorithm [J]. IEEE Access, 2019, 7(1): 32423-32433. (SCI 2区, IF:3.557)

  • Bing Zhang, Huihui Ren, Guoyan Huang, Yongqiang Cheng, Changzhen Hu. Predicting blood pressure from physiological index data using the SVR algorithm [J]. BMC Bioinformatics, 20(1): 109. (CCF C, SCI,IF:2.213 )

  2018 and before:

  • Bing Zhang, Zhiyao Wei, Jiadong Ren, Yongqiang Cheng, Zhangqi Zheng. An Empirical study on Predicting Blood Pressure using Classification and Regression Trees[J], IEEE Access, 2018,6: 21758-21768. (JCR2 SCI, IF:3.557)

  • Bing Zhang, Guoyan Huang, Zhangqi Zheng, Jiadong Ren, Changzhen Hu. Approach to mine the Modularity of Software Network Based on the Most Vital Nodes[J]. IEEE Access, 2018,6: 32543 - 32553. (JCR2 SCI, IF:3.557)

  • Bing Zhang, Guoyan Huang, Haitao He, Jiadong Ren, A novel approach to mine influential functions based on software execution sequence, IET Software, 2017, 11(2): 48-54. (CCF B, SCI)

  • Bing Zhang, Guoyan Huang, Haitao He, Jiadong Ren. Mining dynamic noteworthy functions in software execution sequences, Plos One, 2017, 12(3): e0173244. (SCI: IF: 3.057)

  • Guoyan Huang, Bing Zhang, Rong Ren, Jiadong Ren. An algorithm to find critical execution paths of software based on complex network [J]. International Journal of Modern Physics C, 2015, 26(9): 1550101. (SCI, IF:1.26)

  • Guoyan Huang, Peng Zhang, Bing Zhang, Tengteng Yin, Jiadong Ren. The Optimal Community Detection of Software Based On Complex Networks. International Journal of Modern Physics C, 2016, 27(8): 1650085. (SCI, IF:1.26)

  • Guoyan Huang, Bing Zhang, Rong Ren, Jiadong Ren. A novel approach to efficiently mine structural patterns from software execution sequence [J]. Journal of Computational Information Systems, 2015, 11(3): 1109-1119. (EI)

  • Haitao He, Rong Ren, Bing Zhang, Jiadong Ren. Analysis on impact of node failure in software execution network [J]. Journal of Computational Information Systems, 2015, 11(6):2217-2225. (EI)

  • Jiadong Ren, Hongfei Wu, Tengteng Yin, Lan Bai, Bing Zhang. A Novel Approach for Mining Important Nodes in Directed-Weighted Complex Software Network [J]. Journal of Computational Information Systems, 2015, 11(8). (EI)

  • Yuan Huang, Guoyan Huang, Bing Zhang, Wanchang Jiang. An improved Grey-Markov model for urban air quality forecast [J]. ICIC Express Letters, Part B: Applications, 2016, 7(8): 1739-1745. (EI)

  • Yuan Huang, Guoyan Huang, Wanchang Jiang, Bing Zhang. An improved grey neural network for urban air quality forecast [J]. ICIC Express Letters, 2016, 10(3): 555-562. (EI)

  • Dong Ren, Haiyang Yu, Wenwen Fu, Bing Zhang, Qing Ji. Crop diseases and pests monitoring based on remote sensing: A survey[C].World Automation Congress (WAC), 2012. IEEE, 2012: 177-181.


  • Education Background
  • Work Experience
2017-12 | 2018-12
  • 挪威科技大学
  • Computer Science and Technology
  • 联合培养博士研究生

2012-9 | 2018-1
  • 燕山大学
  • Computer Science and Technology
  • 博士研究生
  • Doctor

2008-9 | 2012-6
  • 三峡大学
  • Computer Science and Technology
  • 大学本科教育
  • Bachelor

  • Social Affiliations
  • Research Focus
No Content
Personal information

Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

Degree : Doctor

Alma Mater : 燕山大学

Education Level : 博士研究生毕业

School/Department : 信息科学与工程学院(软件学院)

Date of Employment : 2018-03-26

Discipline : Computer Software and Theory

You are visitors

The Last Update Time : ..


Research Group

    网络与软件安全研究团队

    目前课题组有博士生2名,研究生20余名,欢迎对安全、对生物信息领域感兴趣的同学加入!

    代表性论文:
    ·Zhang, Y., Cai, Y., Zhang, B. et al. Spatially structured exchange of metabolites enhances bacterial survival and resilience in biofilms. Nature Communications 15, 7575 (2024). https://www.nature.com/articles/s41467-024-51940-3. (中科院1区TOP, SCI)
    ·Bing Zhang, Rong Ren, Jia Liu, Mingcai Jiang, Jiadong Ren, Jingyue Li. SQLPsdem: A Proxy-based Mechanism towards Detecting, Locating and Preventing Second-Order SQL Injections, IEEE Transactions on Software Engineering, 2024, DOI: 10.1109/TSE.2024.3400404. (CCF A, 中科院1区 TOP, SCI)
    ·Bing Zhang, Xuyang Zhao, Jiangtian Nie, Jianhang Tang, Yuling Chen, Yang Zhang, and Dusit Niyato. 2024. Epidemic Model-based Network Influential Node Ranking Methods: A Ranking Rationality Perspective. ACM Computing Surveys,  56, 8, Article 203 (August 2024). https://doi.org/10.1145/3653296  (中科院1区TOP, SCI)
    ·Bing Zhang, Jingyue Li*, Jiadong Ren, Guoyan  Huang. Efficiency and Effectiveness of web application vulnerability detection approaches: A Review, ACM Computing Surveys,  2022, 54, 9, Article 190.  https://dl.acm.org/doi/10.1145/3474553  (中科院1区TOP, SCI)
    ·Zhangqi Zheng, Bing Zhang*, Yongshan Liu, Jiadong Ren, Xuyang Zhao, Qian Wang, An approach for predicting multiple-type overflow vulnerabilities based on combination features and a time series neural network algorithm, Computers & Security, 2022. (CCF B, SCI)
    ·Zheng Z, Liu Y, Zhang B, et al. A multitype software buffer overflow vulnerability prediction method based on a software graph structure and a self-attentive graph neural network[J]. Information and Software Technology, 2023: 107246. (CCF B, 2区 SCI)
    ·张炳,文峥,赵宇轩,王苧,任家东. 双粒度轻量级漏洞代码切片方法评估模型,通信学报,2021,42(11): 233-241.
    · 任家东, 张亚飞, 张炳*,等. 基于特征选择的工业互联网入侵检测分类方法[J]. 计算机研究与发展, 2022, 59(5):12.
    ·Guoyan Huang, Xinyi Li, Bing Zhang*, Jiadong Ren. PM2.5 Concentration Forecasting at Surface Monitoring Sites Using GRU Neural Network Based on Empirical Mode Decomposition [J], Science of the Total Environment, 2021, 768:144516.(中科院1区TOP, SCI,高被引)

Copyright © 2018 Yanshan University

MOBILE Version