|
教育经历:
(1) 2018.09-2023.05,内布拉斯加大学林肯分校,统计学,博士;
(2) 2015.09-2017.06,康涅狄格大学,统计学,硕士;
(3) 2011.09-2015.06,中国人民大学,数学与应用数学,本科。
研究工作经历:
(1) 2023.07-至今,燕山大学,理学院,讲师;
主要论著:
(1) F. Sha and R. Zhang, “Adversarially robust subspace learning in the spiked covariance model,” Statistical Analysis and Data Mining: The ASA Data Science Journal, vol. 15, no. 4, pp. 521–530, 2022.
(2) F. Sha and R. Zhang, “Quickest detection of the change of community via stochastic block models,” in Proc. 2022 IEEE Int. Symp. on Information Theory (ISIT), 2022, pp. 1903–1908